Knowledge Graph System - Quick Start Guide
Get from zero to operational knowledge graph system in under 10 minutes.
This guide uses the operator architecture (ADR-061) - the official containerized deployment method. All configuration happens through dedicated operator containers - no local Python installation required.
Prerequisites
- Docker or Podman with Docker Compose
- OpenAI API key (or use local embeddings)
- (Optional) Node.js + npm for
kgCLI tool
Supported Platforms: - ✅ Linux with NVIDIA GPU - Full GPU acceleration (CUDA) - ✅ Linux without GPU - CPU-based embeddings - ✅ Mac (Intel/Apple Silicon) - MPS acceleration on M1/M2/M3 - ✅ Windows with WSL2 - Same as Linux
Quick Start (Recommended)
The init wizard will:
1. Generate infrastructure secrets (.env)
2. Detect your GPU (NVIDIA/Mac/CPU)
3. Start all containers (postgres, garage, operator, api, web)
4. Prompt for admin password
5. Prompt for AI provider configuration
After init completes:
# Check status
./operator.sh status
# Access services
curl http://localhost:8000/health # API
open http://localhost:3000 # Web UI
Daily operations:
./operator.sh start # Start platform
./operator.sh stop # Stop platform
./operator.sh shell # Enter configuration shell
Manual Setup (Step by Step)
If you prefer more control, here are the individual steps:
Step 1: Generate Infrastructure Secrets
Flags:
- --dev - Uses simple database password for local development
- Without --dev - All secrets are cryptographically secure (production)
Step 2: Start Infrastructure
Starts PostgreSQL, Garage S3 storage, and operator container. Applies database migrations automatically.
Step 3: Configure Platform
# Enter operator shell
./operator.sh shell
# Inside the shell:
configure.py admin # Create admin user
configure.py ai-provider openai --model gpt-4o # Set AI provider
configure.py embedding 2 # Activate local embeddings
configure.py api-key openai # Store API key
configure.py status # Verify configuration
# Exit shell
exit
Step 4: Start Application
Starts API server and web visualization app.
Step 5: Verify
./operator.sh status
# Should show all 5 containers:
# - knowledge-graph-postgres (healthy)
# - knowledge-graph-garage (healthy)
# - kg-operator (running)
# - kg-api-dev (healthy)
# - kg-web-dev (healthy)
Configuration Reference
Available Embedding Profiles
| ID | Provider | Model | Dimensions | Notes |
|---|---|---|---|---|
| 1 | openai | text-embedding-3-small | 1536 | Cloud API, requires key |
| 2 | local | nomic-embed-text-v1.5 | 768 | Local, auto-detects GPU |
Available AI Providers
# OpenAI
configure.py ai-provider openai --model gpt-4o
configure.py ai-provider openai --model gpt-4o-mini
# Anthropic
configure.py ai-provider anthropic --model claude-sonnet-4-20250514
# Ollama (local)
configure.py ai-provider ollama --model mistral:7b-instruct
Operator Shell Aliases
Inside ./operator.sh shell:
- status - View platform configuration
- pg - Connect to database (credentials auto-loaded)
- configure - Run configure.py
- operator-help [topic] - Help system
Cleanup
# Stop services (keeps data)
./operator.sh stop
# Complete teardown (removes all data)
./operator.sh teardown --full
# Keep secrets, remove everything else
./operator.sh teardown --keep-env
Troubleshooting
Check logs:
Restart a service:
Rebuild after code changes:
Complete reset:
Next Steps
Test the platform:
# Install kg CLI (optional)
cd client && ./install.sh && cd ..
# Test
kg health
kg database stats
# Ingest a document
kg ingest file -o "Test Ontology" document.txt
Architecture Notes
- Secrets: Infrastructure secrets in
.env, application secrets encrypted in database - Configuration: All stored in PostgreSQL, managed via operator container
- GPU: Auto-detected at startup (NVIDIA CUDA, Apple MPS, or CPU fallback)
- Platform: Works with Docker Compose and Podman Compose